

Functional Analysis of Protonephridia Genes Identified by Drop-seq

Andrew Gaetano and Ryan King

Introduction

Planarians possess a primitive excretory system called protonephridia, which consists of an organized network of branched tubes that function in waste filtration and water regulation. On a cellular and molecular level, the planarian excretory system shows considerable homology to the human excretory system: the kidney. Knowing what genes are necessary for a functional excretory system, how the genes interact, and mechanisms that alter normal gene function leading to disease is critical for the development of treatments for excretory system diseases. Furthermore, understanding flatworm-specific genes, many of which are parasitic to humans, may provide useful drug targets for treating parasitic worm infections.

A recent, significant advancement has been the development of single-cell transcriptomic technologies that allow for the ability to examine gene expression profiles of individual cells (Figure 1). Planarians were the first organism to have these technologies applied to determine the expression profile of all of the animal's cells (Fincher, 2018). However, only a few of the 3,000 protonephridia genes identified and available via the public database (https://digiworm.wi.mit.edu/) were validated by Fincher et al. To further explore the genes required for excretory system function, we have chosen the 48 most highly expressed protonephridia genes from the Fincher 2018 paper to analyze via bioinformatics, RNA mediated interference, and in situ hybridization.

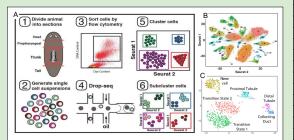
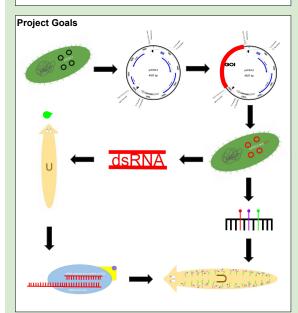



Figure 1: Single-cell transcriptomic data generated by Fincher et al. (2018) using Drop-seq. (A) Schematic illustrating the Drop-seq method used to isolate cluster, and assign gene expression profiles to single cells. (B) 44 planarian cell type clusters representing each cell in the organism. (C) Protonephridia cell clusters.

Name Human / Flatworm BLAST E value Contig >dd smedV4 951 0 1 >dd smedV4 2210 0 1 419 2e-55 ATP1B1 >dd smedV4 16743 0 1 420 N/A Small peptide 421 3e-14 >dd smedV4 17 0 1 >dd_smedV4_11240_0_1 | 422 ZBTB40 1e-6 >dd_smedV4_2698_0_1 423 TSPAN3 4e-23 odd_smedV4_6287_0_1 424 5e-29 Coil domain protein >dd smedV4 10214 0 1 425 pectrin repeat protein Novel flatworm gene >dd smedV4 1571 0 1 426 7e-129 >dd smedV4 5028 0 1 PIK3C3 2e-144 >dd smedV4 3820 0 1 7e-177 Coil domain protein 3e-6 >dd_smedV4_2189_0_1 >dd smedV4 4660 0 1 430 Novel flatworm gene 6e-31 dd_smedV4_8220_0_1 4e-7 dd_smedV4_15904_0_1 432 4e-90 dd_smedV4_10646_0_1 433 Microtubule-actin crosslink 2e-55 dd smedV4 3340 0 1 dd_smedV4_6707_0_1 435 7e-17 odd smedV4 3732 0 1 436 8e-97 dd smedV4 10072 0 1 437 PLEKHG5 1e-56 dd smedV4 299 0 1 CALML5 26-52 >dd_smedV4_7716_0_1 ecreted protein 1e-60 >dd smedV4 4389 0 1 440 0 odd smedV4 9904 0 1 441 7e-41 >dd_smedV4_6156_0_1 442 9e-68 >dd_smedV4_13612_0_1 443 2e-6 >dd_smedV4_4925_0_1 5e-104 >dd_smedV4_817_1_1 PGI YRP 9e-47 >dd_smedV4_9276_0_1 PDF4D 3e-162 >dd_smedV4_4047_0_1 SI C12A4 0 >dd_smedV4_777_0_1 448 Novel flatworm gene 3e-27 dd_smedV4_780_0_1 449 5e-13 dd_smedV4_10881_0_1 450 1e-32 dd smedV4 11520 0 1 2e-60 >dd smedV4 4296 0 1 452 6e-23 >dd smedV4 5620 0 1 1e-41 NS1 >dd smedV4 1561 0 1 Myelin PI P 3e-24 >dd_smedV4_5024_0_1 CLF 105639 6e-48 >dd_smedV4_9557_0_1 ATP2B4 3e-88 dd_smedV4_9764_0_1 N/A >dd smedV4 16329 0 1 458 Microtubule-actin crosslink >dd smedV4 3219 0 1 459 CFAP53 1e-26 >dd smedV4 6921 0 1 6e-158 >dd_smedV4_6499_0_1 26-99 >dd_smedV4_5494_0_1 26-14 >dd smedV4 770 0 1 2e-65 dd_smedV4_2676_0_1 464 1e-21 >dd smedV4 1131 0 1 3e-179

Results

We used bioinformatic tools such as BLAST to determine whether each gene had a human homolog or was flatworm-specific. The same technique was also used to generate primers needed to clone each gene (Table 1). Prior to cloning these genes, we needed to improve the transformation efficiency of our cell lines, and to do this we used the Inoue protocol which increased the efficiency by nearly three orders of magnitude. We also confirmed the integrity of the pJC53.2 plasmid cloning vector's CcdB/CcdA toxin-antitoxin system by plating and used PCR to amplify and confirm known segments on the vector. We have begun to amplify candidate genes from planarian cDNA using polymerase chain reaction. Thus far, we have attained an 80% amplification success rate. These PCR products will be inserted into the cloning vector and transformed into our newly prepared DH5a ultra-competent cells to obtain clones of each gene of interest (Figure 2).

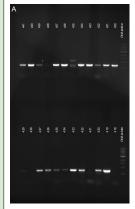


Figure 2: Molecular cloning preparation. (A) PCR amplification of genes 418-441. (B) DH5a transformed with plasmid lacking CcdB toxin (top left) and CcdB toxin-containing pJC53.2 (bottom left); PCR amplification of known vector segments (right). (C) Transformation of DH5a competent cells prepared two years ago (top); transformation of DH5a competent cells prepared in 2021 using the Inoue protocol (bottom).

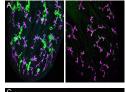


Figure 3: Future techniques that will be used to analyse gene expression. (A) Examples of fluorescent in situ hybridization used to mark protonephridia cells. Normal expression of protonephridia genes (left) compared to a knockdown phenotype showing significantly less levels of gene expression (right). (B) Confocal microscopy used to visualize number and distribution of protonephridia cells. (C) Control animal (top) and knockdown animal showing boated

phenotype (bottom).

Future Directions

After cloning all 48 genes, we will generate riboprobes for in situ hybridization which will be used to visualize each gene's expression. This will allow us to validate whether each gene is expressed in protonephridia and map its expression to specific protonephridia cell types. We will also generate gene specific dsRNA for an RNAi screen, which will allow us to identify animals that look swollen, a symptom that commonly occurs when animals are incapable of excreting excess fluid from their tissues. Several staining methods and confocal microscopy will also be used to examine whether gene knockdown animals have normal number and distribution of protonephridia cells (Figure 3). After completing the initial screen of the 48 genes identified by Fincher et al. (2018). we will identify candidate genes showing interesting phenotypes to perform more refined analyses. This includes performing knockdowns with genes of interacting pathways and examining ciliary motility and structure, which is important for proper protonephridia function.

Fincher, Christopher T et al. (2018). Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science, 10.1126/science.aaq1736.